Why Entropy?

Second Law of Thermodynamics:

The total entropy of an isolated system increases (or remains the same) in every thermodynamical process.

- Macroscopic State variables:
 - volume *V*,
 - temperature T,
 - mass m, mole number $n=N/N_A$, molecule number N,
 - pressure P,
 - internal energy *U*,
 - entropy S.
- The following are **NOT** state variables, since they depend on the process (path), not on the state of the system:
 - heat Q,
 - work W.

What is Entropy?

■ An **infinitesimal** reversible process with heat exchange dQ_r causes an **entropy change**

$$dS = \frac{dQ_r}{T}.$$

For a **finite** reversible process, the **entropy change** is f_{AO}

$$\Delta S = \int_{i}^{f} \frac{dQ_{r}}{T}.$$

■ If the process is **irreversible**, we need to find an **equivalent reversible process** and calculate the integral for this reversible process.

Examples of Entropy Changes

- System **absorbs heat** => its entropy increases.
- System **expells heat** => its entropy decreases.
- In a reversible, **adiabatic** process, no heat is exchanged. Therefore, the entropy of the system does not change.
- Isothermal process: $\Delta S =$
- Carnot cycle: $\Delta S = \frac{Q_h}{T_h} + 0 \frac{Q_c}{T_c} 0 = 0.$
- Example 15.4: **Melting** process: $\Delta S = mL_f/T_m$.

More examples on Entropy changes:

- Example 15.7: Mixing process: $\Delta S = m_1 c_1 \ln(T_f/T_1) + m_2 c_2 \ln(T_f/T_2)$.
- Example 15.6: Free expansion: $\Delta S = nR \ln(V_f/V_i)$.
- Entropy on a <u>microscopic scale</u> (statistical definition): $S=k_{R} \ln P.$

where P is the probability of the state.